Self-assembly of an environmentally responsive polymer/silica nanocomposite.

نویسندگان

  • Georg Garnweitner
  • Bernd Smarsly
  • Roger Assink
  • Wilhelm Ruland
  • Evelyn Bond
  • C Jeffrey Brinker
چکیده

Thermoresponsive nanocomposite thin films composed of alternating layers of silica and polymerized N-isopropylacrylamide (NIPAM) or NIPAM plus dodecyl methacrylate (DM) hydrogels were prepared by surfactant-directed evaporation-induced self-assembly (EISA). During EISA, the organic monomers partition within the hydrophobic domains of a lamellar mesophase. In-situ polymerization via a free radical process results in a 1-2 nm thick hydrogel phase sandwiched between layers of silica oriented parallel to the substrate surface. The thermoresponsiveness of PNIPAM is preserved in this confined environment, and the polymeric layers reversibly swell and deswell by a factor of 2 in water upon temperature changes around the transition temperature of PNIPAM (32 degrees C). The composition, mesostructure, and environmental response were studied by detailed NMR, TGA, and SAXS analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SYNTHESIS AND CHARACTERIZATION OF AN ENVIRONMENTALLY-FRIENDLY HYBRID NANOCOMPOSITE COATING

In this research, a kind of environmentally-friendly inorganic-organic hybrid nanocomposite coating based on silica containing titania/silica core/shell nanoparticles was synthesized and characterized for conservation of facade tiles in historical buildings. The matrix of the composite was prepared by sol-gel process via two methods of ultrasonic and reflux stirring. Tetraethyl orthosilicate (T...

متن کامل

Preparation and characterization of mesostructured polymer-functionalized sol–gel-derived thin films

The present study attempts to incorporate methacrylate-based polymers into ordered lamellar organic/inorganic nanocomposite films composed of alternating SiO2/polymer layers. The films are prepared by dip-coating from a solution containing the monomers and silica precursors, thus leading to composite lamellar mesostructured materials through evaporation-induced self-assembly (EISA). A polymeriz...

متن کامل

Self-assembled conjugated polymer–surfactant–silica mesostructures and their integration into light-emitting diodes{

A self-assembly process for the preparation of functional mesoscopically ordered semiconducting polymer–silica nanocomposite thin films is reported. The nanocomposites are prepared by introducing pre-synthesized semiconducting polymers into a tetrahydrofuran (THF)–water homogeneous sol solution containing silica precursor species and a surface-active agent. Depending on the concentration of the...

متن کامل

Bio-inspired synthesis of polymer–inorganic nanocomposite materials in mild aqueous systems

It is increasingly important that we learn how to fabricate materials in environmentally friendly ways using common resources that are abundant in nature. Biomineralization, the process by which living organisms create a variety of sophisticated composites, such as bone and shell, is an ideal model for such fabrication. This article reviews recent progress toward the synthesis of polymer–inorga...

متن کامل

Synthesis and Characterization of Polymer/Nanosilicagel Nano-composites

In this study, a polymer-silica nanocomposite using the sol-gel method was synthesized in three steps at room temperature. The nanocomposite material was formed with an organic compound (polyethylene glycol) and inorganic silica nanoparticles. Furthermore, the size and the distribution of nanoparticles in the polymer matrix were characterized by a transmission electron microscope (TEM).  In add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 19  شماره 

صفحات  -

تاریخ انتشار 2003